Short-range transport of contaminants released from an e-waste recycling site in South China

> Huizhen Li, Jinmei Bai, Yetian Li, Hefa Cheng, Eddy Y. Zeng, <u>Jing You</u>

State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy Sciences

RISKCYCLY DRESDEN 5-9-2012

- Introduction
- Short-range transport study
- perspectives

Electronic waste (E-waste)

20-50 million tons/year
About 5% of the municipal solid waste

E-waste Management

 Most of e-waste goes to landfill and incinerators (86.4%, USEPA, 2007)

 Most recyclers don't recycle, but export (50-80%)

Prison recycling: high tech chain gang

http://www.electronicstakeback.com/resources/problem-overview/

E-waste in China

From: http://www.vitalgraphics.net/waste/

Of the e-waste imported into Asia, 90% ended up in China (~14-35 million tons/year)

China generates about 1.1 million tons of e-waste annually (The PRD accounts for ~45%)

Major e-waste recycling sites in China

Ni & Zeng, ES&T, 2009

Informal E-waste recycling operations

Open burning, plastic peeling and melting, acid leaching.....

Benefits & Problems

Air, water, soil, sediment, organism and human

Contaminants in air

	PBDEs (ng/m ³)	PCDD/Fs (pg/m ³)	Reference		
Guiyu	11.7	20 +:	Chen et al. 2009		
Control-Chendian	0.38	30 Times	Chen et al. 2009		
Guiyu 7	0 21.5	140 times	Deng et al. 2007		
Control-Hongkong	mes 0.15	So far, th	So far, the highest values		
Control- Guangzhou	0.29	documented worldwide.			
Guiyu		64.9-2365	Zhao et al. 2007		
Control-Chendian		7.12-461	Zhao et al. 2007		

Ambient air in e-waste dismantling areas has been severely contaminated by POPs.

Contaminants in soil

Crude e-waste recycling procedures are the main cause to release POPs (e.g. PBDEs, PCDD/Fs) to the environment (Guiyu, South China).

Leung et al. *ES&T*, 2007

Contaminants in biota

Site	Organism	PBDEs	PCBs	Reference
Longtang, Qingyuan	Fowl	1.5-7897 ^a		Luo et al. 2009a
Longtang, Qingyuan	Duck	1.9-134 ^a		Luo et al. 2009a
Longtang, Qingyuan	Wild aquatic species	52.7-1702 ^b	20.2-25958 ^b	Wu et al. 2008
Control	Wild aquatic species	13.0-20.5 ^b	75.4-82.8 ^b	Wu et al. 2008
Longtang, Qingyuan	Birds	37-2200 ^a	960-1400000 ^a	Luo et al. 2009b

^a ng/g lipid weight; ^b ng/g wet weight

Contaminants in human tissue

E-waste workers had higher risks on exposing to e-wastederived contaminants than other people groups

TEQ-toxic equivalency

Zhao et al. 2008; Bi et al. 2007; Yuan et al. 2008; Wen et al. 2008; Chan et al. 2007

Severe contamination observed in the sites where informal e-waste recycling was practiced.

But...

How about the surrounding areas?

Objectives

Evaluate the short-range transport (SRT) potential of contaminants from an e-waste recycling site to the surrounding regions in South China by analyzing contaminants residues in surface soil.

Compare the SRT potential of PBDEs, PCBs and heavy metals released from e-waste recycling site.

Assess the risks of those contaminants might pose on the surrounding areas.

Target e-waste recycling site

Longtang, Qingyuan, located about 50 km north of Guangzhou (the capital of Guangdong Province)

Sampling sites

Center:

Ding'an Village in Longtang (LTO), 30 years >1300 workshops

Four directions: LY, LB, LZ, and LC

Six circles with radii of 2.5, 5, 10, 20, 30, and 40 km

Sample preparation

UAME-ultrasound-assisted microwave extraction

Li et al. Talanta, 2010

Contaminants in soil

The highest concentrations of sum PBDEs, PCBs, and heavy metals in soil were all found in Dingan Village (LTO)

PBDEs composition

BDE-209

 accounted for
 83% of all
 PBDEs in use.

 In the soil samples, BDE-209 contributed 61-95% of all PBDEs, except of LY20 (31%)

PCBs composition

 The commonly used CB52, CB101, CB118, CB153 accounted for a large portion of total PCBs

 Small quantity of usage of lesschlorinesubstituted PCBs

 But, relative high transport potential

Transport potential

<u>Transportability:</u> chemical volatility, atmospheric or biota degradation, terrain, wind direction, and other weather conditions

- <u>Short range transport (SRT</u>): environmental factors, e.g. terrain
- Long range transport (LRT): chemical characteristics, e.g. volatility and degradation potential

Transport potential (metals)

Heavy metal residues in soil:

- No distinct trend
- Low vapor pressures
- Stay in the original place rather than transport to the surrounding areas

Transport potential (PBDEs)

- PBDE residues in soil decreased with increasing distance
- Slopes of the regression lines: -1.09 to -1.58; r²: 0.46-0.65
- No significant differences in transport among the four directions

Transport potential (PCBs)

- PCB residues in soil decreased with increasing distance
- Slopes of the regression lines: -1.31 to -2.12; r²: 0.43-0.85
- No significant differences in transport among the four directions
- The SRT potential of PBDEs and PCBs showed no difference

Difference among homologue groups (PBDEs)

- No significant difference for the highly and less brominated PBDEs
- Levels of BDE-209 decreased quicker than less brominated PBDEs
- The percentage of BDE-209 in total PBDEs slightly decreased
- BDE-209 had less transport ability than other PBDEs

Difference among homologue groups (PCBs)

No significant difference for the highly and less chlorinated PCBs
ΣMono-, bi-, tri-CB had relatively higher transport potential

Summary

- High concentrations of PBDEs, PCBs, and heavy metals in soils in an e-waste site in Longtang, Qingyuan
- E-waste recycling activities had caused severe local contamination
- Heavy metals seemed to stay in the local due to their low vapor pressures
- PBDEs and PCBs had ability to transport from the pollution source to the surrounding areas
- BDE-209 showed slightly less transport potential than other PBDEs or PCBs

More assessment

Additional 21 soil samples were collected within an 8 kmradius circle of Ding'an Village to assess the risks of the ewaste recycling processes Mass inventories (I) of the contaminants were calculated:

 $I = \sum kCAdp$

- The calculated mass inventory of BDE-209, sum PBDEs, sum PCBs and sum heavy metals were 0.92, 0.134, 0.860 and 1434 tons, respectively
- The mass inventories of Cd, Cu, and Pb were estimated as 4.68, 757, and 673 tons
- The e-waste dismantling activities caused severe contamination to the local environment

Conclusions

 The primitive and unprotected e-waste dismantling and recycling procedures had made Longtang a pollution source of different kinds of contaminants, and might pose severe treat to the surrounding areas due to the <u>SRT potential of POPs</u>

Future work

 Better understand the transportability of POPs in short- and long-range scales

 Assess the risks on biota and human health caused by the transport of contaminants from ewaste recycling site (pollution source)

Acknowledgements

- Zaicheng He, Wenfen Zhang for map preparation and soil sampling
- The Hundred Talents Program of Chinese Academy of Sciences & the National Natural Science Foundation of China

- RISKCYCLE

Journal of Environmental JEM, 13, 836-843 Monitoring Youjing@gig.ac.cn

Cutting-Edge Research on Environmental Processes & Impacts

www.rsc.org/jem

Volume 13 | Number 4 | April 2011 | Pages 765–1104

EUROPEAN

COMMISSION

Community Research

PROGRAMM

Can be the polybrominated compounds a hazard for the pregnant women in an environment of

electronic compounds exposure?

Professor Marta Schuhmacher¹ Francesc Fabrega¹, Marti Nadal², J. Luis Domingo²

Chemical Engineering Departament¹, Laboratory of Toxicology and Environmental Health² Universitat Rovira i Virgili, Tarragona,Spain

Introduction

Polybrominated diphenyl ethers. Family 209 congeners.

- Use as a flame retardant in electronics, plastics, textile and furnish.
- Bioaccumulative, persistent & toxic.
- Endocrine-disrupting activity.

European Commission

RESEARCH

PBDE-209

Decabromodiphenil ether (PBDE-209)

- PBDE-209 can cause neurobehavioral deficits and can cause cancer in animals
- Stockholm approved the elimination of PBDE-209
- Now, is still produced mainly in undeveloped countries

Annual consumption of PBDE-209 in 2001

European Commission

RESEARCH

Alternative to testing methods

European Commission

RESEARCH

Testing methods

In Silico

In vitro

• European regulations foresee the use of methods alternative to animal tests

PBPK models as alternative testing methods

 Physiologically based on pharmacokinetic models (PBPK)

European Commission

RESEARCH

- Mathematical representations of animals or human body, where the organs are considered as compartments.
- Use in health risk assessment & drug development

RESEARCH

Objectives

Elaborate a PBPK model for PBDE-209

Evaluate the accumulation in human breask milk for women in Guiyu (China)

Model elaboration

□ Tissue and blood flow variability along the time in acute exposure

Emond C,et al. 2010. Toxicology and Applied Pharmacology 242:290-298.

Price K et al. 2003. J Toxicol Environ Health A 66:417–433.

PBPK parameters

PBPK parameters extracted from literature.
Equations:

$$\frac{dC}{dt} = \frac{F}{V} \times \left(Cvenous - \frac{C}{P}\right)$$

- □ F: Flow enter in the organ mL/h
- □ V: Organ volume mL
- C venous: concentration enter in the compartment mg/mL
- C: concentration inside the compartment mg/mL
- Partition coefficient: ratio to the tissue concentration to the arterial concentration in equilibrium

RESEARCH

Use of AcsIX software for modeling and simulation of dynamic systems and processes

RISKCYCLE

🔀 acslX					
File Edit View Execute Tools Window Help					
:					
Project F	iles x 🕞 Command Window x 🛛 🎇 Statl Page 🗴 🖺 CSL1.csl x 🔤 Concentracions texists x 🛛 🔽 concentration breast milk x 🗸 🗸				
133					
134	!AFB = Amount in fat blood (mg)				
135	RAFB = QF*(CA-CVF) + PAF*(CF/PF-CVF) !rate of change of amt in fat blood- mg/h				
136	AFB = integ (RAFE, 0.0) amount in fat blood - mg				
137	CVF = AFB/VFB !concentration in fat blood - mg/L				
138	!AF = Amount in fat tissue (mg)				
139	R&F = P&F*(CVF - CF/PF) !rate of change of amt in fat - mg/h				
140	AF = integ (RAF, 0.0) !amount in fat - mg				
141	CF = AF/VF concentration in fat - mg/L				
142	1870 - Amount in burnet bland (mm)				
140	IAFB = Amount in Breast blood (mg)				
144	REPRESENT = (DREAS) (CAPONERAS) + FAREAS) (CREAS) (DREAS) (CREAS) (TABLE OF CHANGE OF AND IN DREAS DIOUT				
146	CVRPETST = NDEFSTR/NREPEISTR _ concentration in breast block - mg/I				
147	LAF = Amount in breast tissue (mr)				
148	RABELAST = PABREAST*(CVBREAST - GBREAST/PBREAST) rate of change of amt in breast - mg/h				
149	HEFELST = intermediate (FERFELST, 0.0) Lemont in breast - me				
150	CBREAST = ABREAST/VBREAST concentration in breast - mg/L				
151					
152					
153	AL = Amount in liver tissue (mg)				
154	RAL = QL*(CA-CVL)-RAM !rate of change of amt in liver - mg/h				
155	AL = integ (RAL, 0.0) !amount liver - mg				
156	CL = AL/VL !concentration in liver - mg/L				
157	CVL = CL/PL !concentration in liver blood - mg/L				
158					
159	IAM = Amount metabolized (mg)				
160	RAM = Kelim*CVL				
161	AM = integ (RAM, 0.0) !amount metabolized - mg				
162					
163					
164	PELASMA COMPACTMENT				
105	RAFIAS = (QL-CVL) + (QE-CVE) + (QC-CVE) + (QC-CVE) + (QE-CVE) + (QE-CVE) + (PC-CVE) + (P				
Line E2 Column 22 MIC					
Tabbed View Un					
🦺 Inicio	🏾 🚱 💿 🕒 acsiX Softwa 💽 Microsoft Po 🛛 🔀 3 Microsoft 👻 🍅 PBDEs model 🛛 🔀 acsiX (No res 🔁 A physiologic ES 🔍 🥵 13:34				

PBDE-209 concentrations

RESEARCH

PBPK application for breast feeding

Model validation

- Model validated using human data of the population of the area of Catalonia (NE Spain)
- □ Intake PBDE =1.1 ng/KgBW/day
- Breast milk

Mean concentration=2.5ng/g fat Min conc.= 0.57 Max conc.=5.9 SD=1.6

Acumulation in breast milk (Tarragona case study)

Model validation

Max conc.=1.058ng/g fat in breast milk
Well approximate results

Area under study

Guiyu (China)

European Commission

E-waste recycling in Guiyu

□ 60,000 e-workers in Guiyu on 2005

European Commission

RESEARCH

- Higher PBDE exposure comparing with European areas
- Risk for the population under study

Dietary intake from EUSES

European Commission

RESEARCH

Oral intake (food & water) of 24mg/Kg BW/day
Inhalation intake of 3.4*10⁻⁹mg/Kg BW/day
Rf Dosis = 0.007 mg/Kg BW/day

Results of breast milk in chronic exposure

European Commission

RESEARCH

Maxim concentration of 1,008ng/g fat after 60 days of exposure.

PBDE tissue concentration

	Before pregnance (30 years)	1 month after pregnance	3 months after pregnance
Blood	33.21	0.11	0.10
Brain	79.63	0.33	0.29
Liver	209.79	1.09	0.98
Fat	101.59	9.99	10.01
Kidney	159.94	0.54	0.49
Rest of the			
body	20.53	0.22	0.20
Breast		0.64	1.48

Units: Breast μ g/g, the rest of the tissues mg/L

European Commission

Breast milk comparative

Length (days)

European Commission

RESEARCH

100 200 300

400 500

600 700 800

Tarragona Time to reach maxim concentration of 20 days

Guiyu
Time to reach maxim concentration of 5 years

Difference due to the high intake of the Guiyu area.

900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000

Conclusions

Strong accumulation in breast milk

European Commission

RESEARCH

- High risk for breast feeding children
- Poor metabolism and urinary elimination
- PBPK can be used as an alternative no testing method for risk evaluation after chronic exposure

COMMISSION

SEVENTH FRAMEWORK PROGRAMM

Thank you for your attention!

RISKCYCLE

Professor Marta Schuhmacher

Chemical Engineering Departament Universitat Rovira i Virgili Tarragona Spain

Human and Environmental impact producted by the E-waste releases at Guiyu Region (China)

N. Suciu¹, E. Capri¹, M. Trevisan¹, T. Tanaka², H. Tien³, S. Heise³, M. Schuhmacher⁴, M. Nadal⁴, J. Rovira⁴, X. Seguí⁵, J. Casal⁵, R. M. Darbra⁵

¹Institute of Agricultural and Environmental Chemistry. Università Cattolica del Sacro Cuore. Via Emilia Parmense 84, 29100. Piacenza, Italy

²INERIS, Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France

³ Faculty of Life Sciences, Hamburg University of Applied Sciences, Lohbruegger Kirchstraße 65, 21033 Hamburg, Germany

⁴ School of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26. 43007 Tarragona, Spain

⁵ Dept. Chemical Engineering. Universitat Politècnica de Catalunya, Diagonal, 647, 08028 Barcelona, Spain

Summary

Objectives

• To evaluate the distribution of two electronic device additives, lead (Pb) and decabrominated diphenyl ether (DeBDE), into the different environmental compartments during the e-waste recycling and their potential impact on the environment and workers'/habitants' (adults and children) health.

- Uncertainty treatment with the selected models
- Assessment of the strengths and weaknesses of the models

Introduction - what is e-waste?

End-of-life electronic products (computers, printers, photocopy machines, TVs, mobile phones, etc.)

✤ Global e-waste production 20-25 million tones per year¹

- Europe, the U.S. and Australasia are the biggest producers of e-waste
- 2005 EC estimates 8.8 million tones of e-waste in Europe

♦80% of all e-waste are exported to Asia

¹Robinson, B. H. (2009). "E-waste: An assessment of global production and environmental impacts." Science of The Total Environment 408(2): 183-191.

Introduction – Selection of the study area

EUROPEAN

COMMISSION

Map of Guiyu Town. The rectangles show the sampling area when the literature concentration values for Pb (air and water) are considered for the study

Introduction – Selection of the study area

- The town of Guiyu is the largest e-waste site on the world and among the most polluted spots.
- Since 1995, e-waste from U.S, Europe and elsewhere have been continuously transported to Guiyu and "recycled" by villagers
- "Recycling" operations
 - \circ Separation, processing and recycling of plastics
 - Manual separation of products
 - $\circ~$ Removal and collection of solder using heating
 - Acidic extraction of metals from complex mixtures
 - Burning of wastes to remove combustible plastics and isolate metals
 - Glass recovery from cathode ray tubes (CRTs)

Works undertaken by men, women, and even children with little or no protection to health

EUROPEAN COMMISSION

Introduction – Selection of the study area

Typical acid extraction

Open landfills in Guiyu area

dismantling operation.

©2001 Basel Action Network (BAN)

Introduction- Modelled substances

Considered substances – Pb and DeBDE

More than 6% of a computer is Pb; just 5% of total Pb is recycled

Pb – can cause permanent damage to the brain and nervous system, causing retardation and behavioral changes infants and young children

DeBDE – can be found in printed circuit boards, in components such as connectors, in plastic covers and in cables

DeBDE - likely to be carcinogen, endocrine disrupter and/or neurodevelopment toxicant

Community research

Models Application

USEtox TM

- Scale Continental (China)
- Background
 - Landscape data. Parameters for China (e.g. Population, fresh water fraction, natural soil, etc.)
 - Substance data. Information for Pb and PBDE, both imported from RISKCYCLE database
- Inputs:
 - Pb: emission to water (2.437 t/yr), soil (28.64 t/yr) and air (0.179 t/yr) from SFA (with focus on China)
 - DeBDE: emission to water (9.38 \cdot 10⁻² t/yr), soil (0.736 t/yr) and air

 $(2.72 \cdot 10^{-2} \text{ t/yr})$ from SFA for China

USEtox TM

- Outputs
 - Concentrations in the environmental compartments calculated considering processes such as advection, transportation, degradation, etc. among the different scales implemented by USEtox[™].
 - Human intake fractions of Pb and DeBDE (kg_{intake} kg_{emitted}⁻¹) for different exposure pathways

EUSES Model

- Scale Regional for Guiyu region (10³ km²)
- Background
 - Landscape data. Parameters for Guiyu region (e.g. Population, fresh water fraction, natural soil, etc.)
 - Substance data. Information for DeBDE imported from RISKCYCLE database
- Inputs:
 - DeBDE: emission to water (range from $5.6 \cdot 10^{-3}$ to $5.6 \cdot 10^{-2}$ t/yr), soil (2.4 \cdot 10^{-1} ± 5.7 \cdot 10^{-2} t/yr) and air (8.7 \cdot 10^{-3} ± 1.7 \cdot 10^{-3} t/yr) from SFA in Guiyu region.

EUSES Model

- Outputs
 - Concentrations in the environmental compartments (water, soil, sediment and air) using the multi-media fate model SimpleBox 3.0.
 present in EUSES.
 - Human intake doses for different exposure pathways in Guiyu region.
 - Risk characterization human health and environment are assessed, exposure levels are compared to suitable no-effect levels.

Qwasi Model

- Scale local
- Background defined landscape regarding length and depth of river, depth of sediment layer
- Inputs:
- ✓ Pb emission to water from SFA (leachate: about 9020 kg/yr), scenarios for different atmospheric concentrations and rain rates
- ✓ DeBDE: scenarios for different emissions to water (leachate from disposal sites: 0 30 kg/yr)

RISKCYCLE

Qwasi Model

Outputs

2 FUN Tool

- Scale -local
- Background- scenario development and pathways definition

2 FUN Tool

Inputs

Pb concentration in the river water

Pb concentration in the air flow (on TSP)

Monthly precipitation average

Monthly wind speed average

Monthly soil temperature - created based on air temperature

♦Global solar radiation

Total suspended particles in atmosphere
River geometry, river water flow rate
Daily fish, vegetables (root, leaf, potato), milk and beef ingestion rats by humans

Pb concentration in arterial blood (µg dL⁻¹)

Community research

Pb Properties in 2 FUN Tool, for probabilistic estimations

Property	PDF*/calculation
Partition Coefficient at the sediment pore water interface; k_{d-sed} (m ³ /g)	LN2(-3.2,4.4)
Partition coefficient at the water – SPM interface; k_{d-SPM} (m ³ /g)	LN2(-0.69,0.92)
Bioconcentration Factor; BCF (m3/g fw)	Log(BCF)=f(log(C_dis_water))
1 st regression coefficient of the relationship Log(BCF)=f(log(C_dis_water)); a _{fish_metal} (log(m ³ /g)	norm(5.2,0.38)
2^{nd} regression coefficient of the relationship Log(BCF)=f(log(C_dis_water)); β_{fish_metal}	norm(-0.85,0.073)

SEVENTH FRAMEWORK PROGRAMME

*Probabilistic density function

Results - Continental

USEtox model results

- Pb concentrations and intake doses obtained with USEtox have resulted to be much lower than the limit values found in literature (Air, 8,47·10⁻¹¹ < 5·10⁻² µg·dm⁻³; Water, 9,24·10⁻⁴ < 50 µg·dm⁻³; TDI 2.99·10⁻³ < 25 µg/(kg bw·d)⁻¹).
- DeBDE concentrations and intake doses obtained with USEtox have been lower than the limit values found in literature (Air, 1,29·10⁻¹¹ < 1.24·10⁻⁸ – 9.89·10⁻¹¹ µg·dm⁻³; Water, 2,20·10⁻⁵ < 6.52·10⁻⁵ ⁵-3.35·10⁻⁷ µg·dm⁻³; TDI 1,41·10⁻⁶ < 0,1 µg/(kg bw·d⁻¹);

The situation for the Chinese country with regard to the hazards caused by the e- waste additives Pb and DeBDE is NOT risky

Results - Regional

SEVENTH FRAMEWOR

EUSES model results

- ➤ DeBDE concentrations obtained with Euses have resulted to be in agreement with the values found in literature (Air, $1.4 \cdot 10^{-8} \pm 2.8 \cdot 10^{-9} \cong$ $9,89 \cdot 10^{-8}$ mg·m⁻³; Soil, $1.3 \cdot 10^{1} \pm 3.4 \cong 2.78 \pm 1.17$ mg·kg⁻¹; Sediment , $7.6 \cdot 10^{-3} \pm 1.8 \cdot 10^{-3} \cong 3.0 \cdot 10^{-2} \pm 2.0 \cdot 10^{-2}$ mg·kg⁻¹).
- Regional TDI of DeBDE for human beings 29.7 mg·/(kg bw·d)⁻¹ (7.8 to 72.5 mg·(kg bw·d⁻¹)) > 7.0E⁻⁰³ mg·(kg bw·d)⁻¹ (EPA daily oral reference).
- > Main regional pathway of exposure (99.9%) daily intake of root crop.
- Carcinogenic risk 8.9 cancer cases in 1000 inhabitants; much higher than acceptable value.
- Regarding environmental risk, there is a high risk situation for soil ecosystem and especially in the case of worm-eating predators (120).

Results - Local

Qwasi model results

Atmospheric input is not important for DeBDE but very important for Pb as pathway to water and sediment

Pb WATER concentration (mg*L ⁻¹)				
		Rain rate in m*y ⁻¹		
		Low	Average	High
		0.021	2.2	4.38
Concentration	Low	7*10 ⁻³	$2.5*10^{-2}$	4.4*10-2
in Air	(0.44*10-			
	³ mg*m ⁻³)			
	High	9*10 ⁻³	3.2*10-1	6.3*10-1
	(7.45*10-			
	³ mg*m ⁻³)			
Pb SEDIMENT concentration (mg*kg ⁻¹)				
	Rain rate in m*y ⁻¹			^к у ⁻¹
		Low	Average	High
		0.021	2.2	4.38
Concentration	Low	0.4*10-3	1.6*10 ⁻³	2.7*10-3
in Air	(0.44*10-			
	³ mg*m ⁻³)			
	High	0.5*10-3	1.9*10-2	3.8*10-2
	(7.45*10-			
	³ mg*m ⁻³)			

Results - Local

2FUN TOOL results

Lead concentrations in arterial blood (μ g dL⁻¹) over 10 years simulation; (a) initial age 2 years, (b) initial age 10 years, (c) initial age 20 years

Global sensitivity analysis for Pb concentration in arterial blood

SEVENTH FRAMEWORI PROGRAMME

Pb concentration in fish, potato, root, leaf, milk and beef (mg kg⁻¹)

Conclusions

Uncertainty has often been present in this study; this has implied that some assumptions have been taken.

- ✓ The results obtained after the models calculations were quite acceptable; comparing the results of each model with values extracted from literature, the predicted values were at the same order of magnitude as the monitored values.
- ✓ Concerning risk characterization of Pb and DeBDE, a clear increase of the risk for the environment and human health when reducing the scale of the study was observed.
- ✓ USEtox[™] obtained low concentrations of Pb and DeBDE when assessing the environmental distribution of additives for the country of China.
- ✓ EUSES obtained a high level of risk for both environmental and human health in Guiyu region.

Conclusions

- ✓ Qwasi; DeBDE-leaching from deposited waste material important route of water and sediment contamination; fraction that is transferred to the atmosphere has a less impact. Pb concentration in the environment is strongly influenced by air concentration and rain rate, in addition to direct emissions.
- ✓ 2 FUN; real health risk for workers/habitants of the Guiyu town due to the released of Pb during e-waste recycling processes. A higher risk was observed for very young children
- ✓ From the combination of all the selected models, a better understanding of the e-waste informal recycling processes has been achieved.

Thank you for your attention!

Risk assessment of informal E-waste recycling activities

Vera Susanne Rotter Maarten A. Siebel Bernd Bilitewski Alexander Janz

RISKCYCLE

8-9 May 2012 Dresden, Germany

End-of-life management

Vera Susanne Rotter Risk assessment of informal E-waste recycling activities Abfall Wirtschaft

Heavy metal potential in Waste Electric and Electronic Equipment (WEEE)

Test methods for assessing fate of heavy metals during recycling

Dissipative distribution of heavy metals during landfilling and open dumping

Outlook / Discussion:

Risk assessment of informal E-waste recycling activities

The problem of dissipative distribution of damaging trace metals with WEEE into the environment

Heavy metals in WEEE

• Printed Circuit Boards (PCB) account for 1-25% of WEEE

- contain
 - up to 300 ppm Gold
 - 14% Copper
 - 2% Lead
 - 70 ppm Cadmium

PCB content of WEEE in %

4

Annex II (abridgment) of Directive 2002/96/EC on waste electrical and electronic equipment (WEEE): Avoidance of env./heath protection

ANNEX II

Selective treatment for materials and components of waste electrical and electronic equipment in accordance with Article 6(1)

- 1. As a minimum the following substances, preparations and components have to be removed from any separately collected WEEE:
 - polychlorinated biphenyls (PCB) containing capacitors in accordance with Council Directive 96/59/EC of 16 September 1996 on the disposal of polychlorinated biphenyls and polychlorinated terphenyls (PCB/PCT) (¹),
 - mercury containing components, such as switches or backlighting lamps,
 - batteries,
 - printed circuit boards of mobile phones generally, and of other devices if the surface of the printed circuit board is greater than 10 square centimetres,
 - toner cartridges, liquid and pasty, as well as colour toner,
 - plastic containing brominated flame retardants,
 - asbestos waste and components which contain asbestos,
 - cathode ray tubes,
 - chlorofluorocarbons (CFC), hydrochlorofluorocarbons (HCFC) or hydrofluorocarbons (HFC), hydrocarbons (HC),
 - gas discharge lamps,
 - liquid crystal displays (together with their casing where appropriate) of a surface greater than 100 square centimetres and all those back-lighted with gas discharge lamps,
 - external electric cables,
 - components containing refractory ceramic fibres as described in Commission Directive 97/69/EC of 5 December 1997 adapting to technical progress Council Directive 67/548/EEC relating to the classification, packaging and

Vera Susanne Rotter

Risk assessment of informal E-waste recycling activities

Recycling and disposal ways of WEEE & PCB (EU)

Pathways of heavy metals related to informal WEEE recycling

Heavy metals in WEEE

- Printed Circuit boards account for 3-30% of WEEE ۲
- Contain •
 - up to 300 ppm Gold
 - -14% Copper
 - 2% Lead
 - 300 ppm Cadmium

Distribution of 8 key metals in printed circuit boards

Vera Susanne Rotter Risk assessment of informal E-waste recycling activities

Abfall Wirtschaft

Total content

BATCH LEACHING TESTS

One stage batch test / EN 12457-4 Compliance test used inside the EU to assess the suitability of waste for landfilling

Principle:

leachant	De-ionized water
рН	depending on matrix
L/S ratio	10:1, 2:1
Duration	24 h

BATCH LEACHING TESTS

Controlled pHTest / DIN CEN TS 14 429 Test for basic characterization of waste to obtain information on short-term and long-term and specific characteristics

Principle:

leachant	Deionized water with varying amount of HNO_3 & NaOH depending on buffer	Principle: leachant	buffered acetic acid solution
pH	controlled and fixed	pH	2.88 ± 0.05
L/S ratio	10:1,	L/S ratio	20:1
Duration	24 h at each pH	Duration	20 h

1311

<u>End-of-life management</u>

Vera Susanne Rotter Risk assessment of informal E-waste recycling activities

developed by USEPA to simulate the leaching of metals in co-disposal hazardous waste and MSW in a "worst - case scenario"

TCLP US-EPA SW- 846 , method

COLUMN TESTS

 Up-flow percolation Test / EN 14 405/ Test for basic characterization of waste to describe the L/S dependence of leaching

Principle:

leachant	De-ionized water
рН	depending on matrix
L/S ratio	continuously increased till L/S 1:10
Duration	30 days

LYSIMETER TESTS

Lab-scale Lysimeter

Test for simulating long-term leaching behavior in anaerobic landfills

Principle:

leachant	De-ionized water, circulating leachate
pH L/S ratio	depending on matrix continuously increased
Duration	150 days

UPTAKE TESTS

Irrigation of plants with leachate from PCB on a silica soil

Principle:

leachant from batch leaching test with DI water,

plant	radis
test scheme	variation of dilution
	full analysis of root, leaves and soil

Duration 30 days

Assumptions on dissipative distribution of heavy metals under landfill conditions

<u>Anaerobic Phase</u>

- > Heavy metals mobilized from WEEE (low pH), but remain in landfill body
- sorption at humic substances
- sorption at P&C
- precipitation as sulfides

→ Dissipative distribution in landfill body

Aerobic phase

In aerobic phase, heavy metals get mobilized into the leachate water

- oxidation of humic substances
- oxidation of P&C
- oxidation of sulfides

→ Dissipative distribution into environment

Heavy metal release from WEEE under landfill-conditions: Landfill-Simulation-Tests (Example: Lead)

- Anaerobic atmosphere: >90% Zn/Ni/ Cr, >>99% Pb/Cd remain in landfill body
- Down-concentration in PCB, Up-concetration in P&C
- Aerobic atmosphere: increasing heavy metal concentration

Risk assessment of informal E-waste recycling activities

16

Vera Susanne Rotter Risk assessment of informal E-waste recycling activities Abfall Wirtschaft

Risk assessment of informal E-waste recycling activities

18

Uptake of heavy metals from WEEE leachates

Cadmium transfer to plants

Metal distribution

Vera Susanne Rotter Risk assessment of informal E-waste recycling activities

End-of-life management

Conclusions

1	 Conditions of disposal and dumping von recycling residues vary and are difficult to predict
2	 Conditions of disposal influence decisively the fate and impact of metals
3	 The applicability of standardized test methods to assess informal recycling scheme could not be proven
4	 Easy assessment tools are required to make the right decisions for the design of recycling processes
5	 Resource-efficiency considers both, recovery of non-renewable materials and protection of natural resources

Conclusions at the EU level

- Annex II follows a pollution control paradigm and does not bridge the conflict of dissipation and control of hazardous and valuable substance up to 100%
- As practiced, Annex II does not prevent negative impacts through direct disposal of WEEE components

What could be solutions to avoid dissipative distribution of hazardous / scarce substances?

- Wider restriction of the use hazardous substances (Product-Design)
- Improvement of collection of appliances with high concentration of valuable / damaging metals (e. g. refund- or leasing systems)
- Equipment type specific guidelines regarding the treatment (e. g. mobile phones) on BAT-level
 - Avoidance of illegal WEEE-exports

Alexander Janz alexander.janz@bmu.bund.de

Vera Susanne Rotter vera.rotter@tu-berlin.de

Maarten Siebel <u>m.siebel@unesco-ihe.org</u>

Bernd Bilitewski abfall@mail.zih.tu-dresden.de

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

UNESCO-IHE Institute for Water Education

